US009172395B2

a2z United States Patent (10) Patent No.: US 9,172,395 B2
Liu et al. 45) Date of Patent: Oct. 27,2015
(54) GENERATING AN ICONV MODULE IN REAL (56) References Cited
TIME
U.S. PATENT DOCUMENTS
(71) Applicant: Internati({nal Business Machines 5,802,538 A * 9/1998 OQOIShi ooorrovovoorveerrn, 715/263
Corporation, Armonk, NY (US) 5,890,184 A * 3/1999 Ooishi 715/203
6,016,396 A * 1/2000 Mochizuki 717/149
. . . 6,999,082 B2 2/2006 Nishimura
(72) Inventors: (Sz“ L:‘s EOH'II‘I;IEIOJCSI;, TTX (Usz Rong 7.199.720 B2 42007 Chen etal.
u, Austin, ; Teerasi 7,278,100 Bl 10/2007 Ehrman
Tinnakul, Pflugerville, TX (US) 7,703,004 B2 4/2010 Bier
8,296,747 B2 10/2012 Is}_lizaki et al.
(73) Assignee: International Business Machines 2013/0091155 A(l)THéﬁoIiIBJBI\IﬁIgZ%TE)aII\'IS
Corporation, Armonk, NY (US)
Foller, “Online Sample of a CharSet property for conversion texts and
(*) Notice: Subject to any disclaimer, the term of this files,” downloaded from <http://www.motobit.com/util/charset-
patent is extended or adjusted under 35 codepage-conversion.asp> on Nov. 15, 2013, copyrighted 1996.
U.S.C. 154(b) by 74 days. Haible, “Introduction to libiconv,” downloaded from <http://www.
gnu.org/software/libiconv/> on Nov. 15, 2013, Aug. 7, 2011.
(21) Appl. No.: 14/082,125 * cited by examiner
(22) Filed: Nov. 16, 2013 Primary Examiner — Jean B Jeanglaude
(74) Attorney, Agent, or Firm — Thomas E. Tyson; Gregory
(65) Prior Publication Data K. Goshorn; Greg Goshorn, P.C.
57 ABSTRACT
US 2015/0138003 Al May 21, 2015 ().
Provided are techniques for detecting a mapping, by a uni-
versal convertor, of a first character set to a second character
(51) Int. CL set and of the second character set to a third character set;
HO3M 7/34 (2006.01) monitoring, logging, and analyzing code set conversion
Ho3M 7/00 (2006.01) (CSC) operations; generating an updated character set con-
(52) US.CL version module from the first character set to the third char-
CPC i HO3M 7/00 (2013.01) acter set in response to the detecting and a determination that
(58) Field of Classification Search Fhe CSC operation exceed the predeﬁged threshold; and.s.tor-
CPC ... HO03M 7/00; H03M 7/40; H03M 7/30; ing the updated character set conversion module for utiliza-
HO3M 9/00 tion of subsequent processing of the first character set to the
USPC 341/50. 51 third character set.

See application file for complete search history.

CONMPUIING

20 Claims, 7 Drawing Sheets

U.S. Patent

Figure 1

Oct. 27, 2015

Sheet 1 of 7 US 9,172,395 B2

COMPUTING
SYSTEM
ARCHITECTURE

108

COMPUTING
SYSTEM
162

KEYBOARD
o 108

MONKITOR
16

MOLISE
PG~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ot

RCCG 3

INTERNET

DadTs 118

BMTs 11

BINARY U85

SEHVER

122

T
N

LEVEL-]
CSCLIST
128

U8 2

W*"




U.S. Patent Oct. 27, 2015 Sheet 2 of 7 US 9,172,395 B2

Figure 2

ROCG 117

INPUT/OUTPUT MODULE

DATA MODULE

CSC GENERATING THRESHOLD AND RULES
156

TERT CASE POOL

OPERATING PARAMETERS

1),

UNSAGE MONITOR AGENT (UMA)

MAPPING TABLE MAKER
146

CRC COMPILER

CSC VERIFICATION AGENT

CSC DEPLOYMENT MANAGER

152




U.S. Patent Oct. 27, 2015

Figure 3

A NCONV.

Sheet 3 of 7

09

BEGIN
FINDVGEN.

207

Y

CHECK
METHODS

2065

METHOD
FOLIND?

RETRIEVE

METHOD
1%

Fyy

v

HOONY
METHOD

Y

(¢

LOAD AN
FROM
METHODS

218

ICONY_OPEN

Y

AX

H o B
» ICONY OPEN

RETURN
AN
METHOD

US 9,172,395 B2

INITIATE
LEVEL-2
CONVERTOR

ENT
FINIVGEN.
A NCONY.
239




U.S. Patent Oct. 27, 2015 Sheet 4 of 7 US 9,172,395 B2

Figure 4

BEGIN
LEVEL-2
CONV,

CHECK
MAPPING
TABLES

MAPPING
FOUND?

236

INITIATE
LEVELSS
NO CONVERTOR

238

BETRIEVE ‘
MAPPING °

OOV
TABLES

147




U.S. Patent

Figure 5

Oct. 27,2015 Sheet 5 of 7

BEGIN

LEVEL-3
CONY,
262

CHECK

BACKUP
FOUND?

RETRIEVE
FROM BU

KO

US 9,172,395 B2

™1 CONVERTOR

INITIATE
LEVEL-4




U.S. Patent Oct. 27, 2015 Sheet 6 of 7 US 9,172,395 B2

Figure 6

280

BEGIN
LEVEL-4
CONY,

CHECK
ALIAS
MNAMES

;

FIND
ALIAS (A}

FIND

NOTIFY
NOT _FOUND

ho iy it

ALIAS FOUIND?




U.S. Patent

Figure 7

VPDATE
LEVEL-S
CRCLIST

332

!

LEPLOY
CBC

GENERATE

Oct. 27, 2015

300
BEGIN

MONITOR
CRC UKAGE
307

LT

& CATTE A N MMAPR
| CREATEA NMAI

DEBUGAODDIFY MAP
33N

addedd

HANDLE FRROR

Sheet 7 of 7

US 9,172,395 B2

IJL}»"&D f“i }‘: M‘(’:\\P

a

Y

MERUGE MAPS

LOAD XN MAP

Y

COMPILE MAP

Y

PASS |
VERIFICATION?

CREATE TERT CASES

Y

VERIFY AN MAP




US 9,172,395 B2

1
GENERATING AN ICONV MODULE IN REAL
TIME

FIELD OF DISCLOSURE

The claimed subject matter relates generally to computing
systems and, more specifically, to techniques for the conver-
sion of code sets in multi-national server operation systems.

BACKGROUND OF THE INVENTION

Any particular computing system may employ one or more
of potentially thousands of different code sets, also known as
character sets, charsets and code pages. Converting strings of
data from one code set to another is an important utility
necessary in many computing systems, particularly in multi-
national, server operation systems. Such a utility, or code set
convertor (CSC), may be a first step in applications such as,
but not limited to, information exchange, security authoriza-
tion, data transfer and database access. CSCs are essential for
providing reliable communications across computing plat-
forms and networks. Thousands of CSCs are supported based
upon different requirements and standards worldwide. Cur-
rently, a CSC is configured by selecting a specific CSC com-
ponent that is specific to the source code set and the target
code set. Finding, choosing and loading the specific CSC
component are critical for services that require code set con-
version.

UNIX servers, such as AIX®, use an open architecture to
manage the tasks associated with code set conversion. An
iconv application programming interface (API) is a well-
known programming interface in UNIX-like systems for con-
verting from one character encoding type to another.
Although a new CSC can be added or modified in a system
without rebooting the system, locating the correct CSC from
among the thousands available can create a bottleneck on
system performance. To reduce computing time and power
usage, existing iconv APIs provide three (3) conversion algo-
rithms and a four-level CSC lookup structure. One of the three
algorithms is one-to-one mapping, i.e., A—=N, which may
also include transitive properties, i.c., A—X and X—=N. A
second algorithm involves programming based conversion,
i.e., many-to-one or many-to-many. A third algorithm uses a
combination of the first and second algorithms.

Universal Conversion Modules (UCMs) typically find
intermediate converters when a simple CSC is not available.
For example, when a code set A is needed to be converted to
a code set N, one CSC may convert code set A to X and an
intermediate CSC may convert X to C. Depending upon the
number of intermediate CSCs, such a system may take double
or triple the operation time of a single CSC.

SUMMARY

Provided are techniques for detecting a mapping, by a
universal convertor, of a first character set to a second char-
acter set and of the second character set to a third character
set; monitoring, logging, and analyzing code set conversion
(CSC) operations; generating a updated character set conver-
sion module from the first character set to the third character
set in response to the detecting and a determination that the
CSC operation exceed the predefined threshold; and storing
the updated character set conversion module for utilization of
subsequent processing of the first character set to the third
character set.

This summary is not intended as a comprehensive descrip-
tion of the claimed subject matter but, rather, is intended to

10

15

20

25

30

35

40

45

50

55

60

65

2

provide a brief overview of some of the functionality associ-
ated therewith. Other systems, methods, functionality, fea-
tures and advantages of the claimed subject matter will be or
will become apparent to one with skill in the art upon exami-
nation of the following figures and detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the claimed subject matter can be
obtained when the following detailed description of the dis-
closed embodiments is considered in conjunction with the
following figures, in which:

FIG. 1 is a block diagram of a computing system that may
support an implementation of the claimed subject matter.

FIG. 2is ablock diagram a Run-Time Code Set Conversion
Generator (RCCG) that may implement aspects of the
claimed subject matter.

FIG. 3 is a flowchart of one example of a Find/Generate
(Find/Gen.) A_N Convertor process, associated with a first
level (Level-1) processing of an Extended Universal Conver-
tor Module (EUCM) of FIG. 1, that may implement aspects of
the claimed subject matter.

FIG. 4 is a flowchart of one example of Level-2 Convertor
(Conv.) process, associated with the EUCM of FIG. 1, that
may implement aspects of the claimed subject matter.

FIG. 5 is a flowchart of one example of a Level-3 Conv.
process, associated with the EUCM of FIG. 1, that may
implement aspects of the claimed subject matter.

FIG. 6 is a flowchart of one example of a Level-4 Conv.
process, associated with the EUCM of FIG. 1, that may
implement aspects of the claimed subject matter.

FIG. 7 is a flowchart of one example of Generate Code Set
Convertor (CSC) process, associated with RCCG of FIGS. 1
and 2, that may implement aspects of the claimed subject
matter.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage



US 9,172,395 B2

3

medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational actions
to be performed on the computer, other programmable appa-
ratus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

4

Turning now to the figures, FIG. 1 is a block diagram of one
example of a computing system architecture 100 that may
implement the claimed subject matter. A computing system
102 includes a central processing unit (CPU) 104, coupled to
a monitor 106, a keyboard 108 and a pointing device, or
“mouse,” 110, which together facilitate human interaction
with elements of architecture 100 and computing system 102.
Also included in computing system 102 and attached to CPU
104 is a computer-readable storage medium (CRSM) 112,
which may either be incorporated into computing system 102
i.e. an internal device, or attached externally to CPU 104 by
means of various, commonly available connection devices
such as but not limited to, a universal serial bus (USB) port
(not shown).

CRSM 112 is illustrated storing an operating system (OS),
i.e. an OS_ 1 114, Binary Code Set Convertors (CSCs) 115
and an Extended Universal Convertor Module (EUCM) 116
that incorporates the claimed subject matter. EUCM 116
includes a Run-Time Code Set Conversion Generator
(RCCG) 117. CRSM 112 also stores Default Mapping Tables
(DMTs) 118 and Backup Mapping Tables (BMTs)119. CSCs
115, EUCM 116, RCCG 117, DMTs 118 and BMTs 119 are
described in more detail below in conjunction with FIGS. 2-7.

In this example, computing system 102 and CPU 104 are
connected to the Internet 120, which is also connected to a
server computer, or simply “server,” 122. Although in this
example, computing system 102 and server 122 are commu-
nicatively coupled via the Internet 120, they could also be
coupled through any number of communication mediums
such as, but not limited to, a local area network (LAN) (not
shown). Server 122 is also coupled to a CRSM, i.e. a CRSM
124 and, although now shown would also typically have a
CPU, monitor, keyboard and pointing device like CPU 104,
monitor 106, keyboard 108 and mouse 110. Server 122 is
illustrated executing an OS, i.e. an OS_ 2 126, stored on
CRSM 124, which also stores a list of available code set
convertors, or a Level-1 CSC list 128. Level-1 CSC list rep-
resents one example of a repository of potentially thousands
of possible CSCs that are typically available to computing
systems for code set conversion.

Examples of OSs that may be employed in conjunction
with the claimed subject matter include, but are not limited to,
SOLARIS®, HP-UX®, AIX® and so on. Those with skill in
the relevant arts should realize that the claimed subject matter
is equally applicable, but not limited to, performance issues
on data transactions, analytic and operational deployment of
standalone, portable, embedded, networked, clustered, por-
tioned and could operating systems, and database appliances.
Further, it should be noted there are many possible computing
system configurations, of which computing system architec-
ture 100 is only one simple example.

FIG. 2 is a block diagram of RCCG 117, introduced above
in FIG. 1, in greater detail. RCCG 117 includes an input/
output (1/0) module 140, a data module 142, a usage monitor
agent (UMA) 144, a mapping table maker 146, a CSC com-
piler 148, a CSC Verification Agent 150, a CSC deployment
manager 152 and a graphical user interface (GUI) 154. For the
sake of the following examples, RCCG 117 is assumed to be
stored on CRSM 112 (FIG. 1) and execute on computer 102
(FIG. 1). It should be understood that the claimed subject
matter can be implemented in many types of computing sys-
tems and data storage structures but, for the sake of simplicity,
is described only in terms of computing system 102 and
system architecture 100 (FIG. 1). Further, the representation
of RCCG 117 in FIG. 2 is a logical model. In other words,
components 140, 142, 144, 146, 148, 150, 152 and 154 may
be stored in the same or separates files and loaded and/or



US 9,172,395 B2

5

executed within system 100 either as a single system or as
separate processes interacting via any available inter process
communication (IPC) techniques.

1/0 module 140 handles any communication RCCG 117
has with other components of computing system 102 and
architecture 100. Data module 142 is a repository for infor-
mation, including thresholds, rules, test cases and parameters,
that RCCG 117 requires during normal operation. Examples
of'the types of information stored in data module 142 include
CSC Generating Threshold and Rules (T&R) 156, a test case
pool 158 and operating parameters 160.

T&R 156 stores information that is specific to the genera-
tion of CSCs. Examples of information stored in T&R 156
may be a number of times and/or throughputs (converted
bytes) of a universal convertor have been loaded in a certain
time period. For instance, a new convertor, IBM-937_big5,
may be built if IBM-937_big5 related conversion has been
deployed more than 100 times in past 24 hours or a new
convertor, big5_IBM-937, will be created if related through-
put exceeds 60 MB in past 30 minutes. T&R 156 may also
store related predefined and customized restrictions, genera-
tion rules, conversion algorithms, and/or search and loading
priorities. For example, we can predefine a rule such as only
one-to-one mapped convertors can be automatically gener-
ated by default. Predefined T&R 156 may also be customiz-
able. For example a user may want to add one-to-many or
many-to-many rules to generate and verify a new convertor.

Test case pool 158 stores information relating to previous
iterations of RCCG 117, specifically test cases that have been
generated and that may be employed in current and future
operation of RCCG 117. Operating parameters 160 stores
information that controls some operations of RCCG 117.
Examples include, but are not limited to, the location of log
files and CSC repositories.

UMA 144 is responsible monitoring, logging, and analyz-
ing CSC operations at an OS level. In other words, the data of
CSC loading times and total throughputs for each CSC are
recorded, analyzed, and updated. UMA may be “turned on”
or “turned off” occasionally or permanently based on pre-
defined rules stored in T&R 156.

Mapping Table Maker (MTM) 146 is responsible for gen-
erating a CSC table (see 310,312, 314 and 316, FIG. 7) based
upon intermediate CSCs that have been retrieved using the
disclosed techniques. CSC compiler 148 converts the CSC
table generated by MTM 146 into a binary form that the iconv
API may utilize. CS Verification Agent 150 generates test
cases that may be employed by a programmer or system
administrator to verify the binary CSC generated by CSC
compiler 148. CSC Deployment manager 152 is responsible
for implementing a CSC that has been compiled by CSC
compiler 148 and verified by CSC Verification Agent 150.

GUI 154 enables users such as programmers and system
administrators of RCCG 117 to interact with and to define the
desired functionality of RCCG 117, typically by the setting of
parameters in operating parameters 160. In addition, GUI 154
enables users to be directly involved in the testing and veri-
fication of CSCs generated in accordance with the claimed
subject matter.

FIG. 3 is a flowchart of one example of a Find/Generate
(Find/Gen.) A_N Convertor process 200, associated with a
first level (Level-1) processing of the EUCM 116 of FIG. 1,
that may implement aspects of the claimed subject matter. In
this example, logic associated with process 200 is stored on
CRSM 112 (FIG. 1) as part of EUCM 116 and executed on
one or more processors (not shown) of CPU 104. In the
following example, ‘A’ represents a source code set and ‘N’

10

15

20

25

30

35

40

45

50

55

60

65

6

represents a target code set. In other words, there is a need to
convert a code set A into a code set N.

Process 200 starts in a “Begin Find/Generate (Gen.) A_N
Convertor (Conv.)” block 202 and proceeds immediately to a
“iconv_open (A_N)” block 204. During block 204, the iconv
APl is called with parameters that designate ‘A’ as the source
code set and ‘N’ as the destination code set. During process-
ing associated with a “Check Methods™ block 206, existing
methods are searched for the existence of an existing CSC
that converts an ‘A’ code set to an ‘N’ code set. Such CSC may
be already be located in memory of computing system 102 in
Binary CSCs 115 (FIG. 1) or located in another repository
such as Level-1 CSC list 128 (FIG. 1), which in this example
is at a remote location.

During processing associated with a “Method Found?”
block 208, a determination is made as to whether or not an
appropriate A_N CSC has been located in existing methods.
If not, control proceeds to an “Initiate Level-2 Convertor”
block 210. During processing associated with block 210, a
level-2 conversion process (see 230, FIG. 4) is initiated and
control is transferred via a transition point A.

If, during processing associated with block 208, a determi-
nation is made that an existing method has been located,
control proceeds to a “Retrieve Method” block 212. During
processing associated with block 212, the method located
during processing associated with block 206 is retrieved from
memory, ie. in this example, either binary CSC 115 or
Level-1 CSC list 128. During processing associated with a
“iconv Method” block 214, iconv API is called with the
method retrieved during processing associated with block
212. During processing associated with a “Load A_N From
Methods™ block 216, iconv loads the method and, during
processing associated with a “Return A-N Method” block
218, a pointer is returned so that the calling process has access
to the method. Finally, during processing associated with an
“End Find/Gen A_N Conv.” block 229, process 200 is com-
plete. An “iconv_open (A_X)” block 220 and an “iconv_open
(X-N)” block 222 are described below in conjunction with
FIG. 7. Transition points ‘C’, ‘F’, “‘G” and ‘H’ represent entry
into process 200 from other processes and are explained
below in conjunction with FIGS. 4-7.

FIG. 4 is a flowchart of one example of Level-2 Convertor
(Conv.) process 230, associated with the EUCM 116 of FIG.
1, that may implement aspects of the claimed subject matter.
Like process 200 of FIG. 3, logic associated with process 230
is stored on CRSM 112 (FIG. 1) as part of EUCM 116 and
executed on one or more processors (not shown) of CPU 104.
Process 230 is entered via transition point A, first introduced
above in conjunction with FIG. 3.

Process 230 starts in a “Begin Level-2 Convertor (Conv.)”
block 232 and proceeds immediately to a “Check Mapping
Tables” block 234. During block 234, MTs 118 (FIG. 1) are
consulted to locate any potential mapping between the source
and target code sets, which in his example are code sets ‘A’
and ‘N’, respectively. For example, there might be a mapping
that specifies a first CSC for a conversion between code set ‘A’
and a code set ‘X’ and a second mapping that specifies a
second CSC for a conversion between code set ‘X’ and code
set ‘N’.

During processing associated with a “Mapping Found?”
block 236, a determination is made as to whether or not a
mapping has been identified during processing associated
with block 234. If not, control proceeds to an “Initiate Level-3
Convertor” block 238. During processing associated with
block 238, a level-3 conversion process (see 260, FIG. 5) is
initiated and control is transferred via a transition point B.



US 9,172,395 B2

7

If, during processing associated with block 236, a determi-
nation is made that a viable mapping has been located, control
proceeds to a “Retrieve Mapping” block 240. During process-
ing associated with block 240, the tables found, a table of A-X
conversion and one for X-N conversion are retrieved. During
processing associated with an “iconv Tables” block 242, each
table retrieved during processing associated with block 240
are processed with the iconv API. Control then proceeds, via
atransition point C (FIG. 3) to Load A-N from methods block
216 (FIG. 3) and processing continues as describe above.

FIG. 5 is a flowchart of one example of a Level-3 Conv.
process 260, associated with the EUCM of FIG. 2, that may
implement aspects of the claimed subject matter. Like pro-
cesses 200 of FIG. 3 and process 230 of FIG. 4, logic associ-
ated with process 260 is stored on CRSM 112 (FIG. 1) as part
of EUCM 116 (FIG. 1) and executed on one or more proces-
sors (not shown) of CPU 104. Process 260 is entered via
transition point B, first introduced above in conjunction with
FIG. 4.

Process 260 starts in a “Begin Level-3 Convertor (Conv.)”
block 262 and proceeds immediately to a “Check Backup
(BU)” block 264. During block 264, BMTs 119 are consulted
to determine any if there are any backup A-N convertors.
During processing associated with a “Backup Found?” block
266, a determination is made as to whether or not an appro-
priate backup table has been located. If not, control proceeds
to an “Initiate Level-4 Convertor” block 268. During process-
ing associated with block 268, a level-4 conversion process
(see 280, FIG. 6) is initiated and control is transferred via a
transition point D.

If, during processing associated with block 266, a determi-
nation is made that a backup convertor has been found, con-
trol proceeds to a “Retrieve From Backup” block 270. During
processing associated with block 270, the backups found, a
table of A-X conversion and one for X-N conversion are
retrieved. Control then proceeds, via a transition point E, to a
Generate CSC process 300 (see FIG. 7).

FIG. 6 is a flowchart of one example of a Level-4 Conv.
process 280, associated with the EUCM of FIG. 1, that may
implement aspects of the claimed subject matter. Like pro-
cesses 200 of FIG. 3, process 230 of FIG. 4 and process 260
of FIG. 5, logic associated with process 280 is stored on
CRSM 112 (FIG. 1) as part of EUCM 116 and executed on
one or more processors (not shown) of CPU 104. Process 280
is entered via transition point D, first introduced above in
conjunction with FIG. 5.

Process 280 starts in a “Begin Level-4 Convertor (Conv.)”
block 282 and proceeds immediately to a “Check Alias
Names” block 284. During block 284, a search is conducted
for alternative names for the source and target code sets.
During processing associated with a “Find Alias (A)” block
286, an alternative name for code set A is identified, it pos-
sible. During processing associated with a “Find Alias (N)”
block 288, an alternative name for code set N is identified, it
possible. A code set alias list (not shown) is typically prebuilt
and shipped with conversion libraries or shipped separately
for customizing. In UNIX, default alias list may be directly
built and shipped with /usr/lib/libiconv.a and iconv_open
automatically finds the best fit alias name.

During processing associated with an “A and/or N Alias
Found?” block 290, a determination is made as to whether or
not alternative names for one or both of code sets ‘A’ and ‘N’
have been found. If so, control proceeds, via a transition point
F, back to iconv_open (A_N) block 204 (FIG. 3). Rather than
code set A and code set N being processed the processing
focuses on the aliases for A and or N found during processing
associated with block 288.

10

15

20

25

30

35

40

45

50

55

60

65

8

If, during processing associated with block 290, a determi-
nation is made as that an alias for neither code set A nor code
set N have been found, control proceeds to a “Notify Not-
_Found” block 292. During processing associated with block
292, an administrator or other user is notified that no conver-
sion between code sets ‘A’ and ‘N’ has been found. Control
then proceeds, via a Transition Point G, to End Find/Gen.
Conv. block 219 (FIG. 3) in which process 200 is complete as
described above in conjunction with FIG. 3

FIG. 7 is a flowchart of one example of Generate Code Set
Convertor (CSC) process 300, associated with EUCM of FIG.
1 and RCCG of FIGS. 1 and 2, that may implement aspects of
the claimed subject matter. Like processes 200 of FIG. 3,
process 230 of FIG. 4, process 260 of FIG. 5 and process 280
of FIG. 6, logic associated with process 280 is stored on
CRSM 112 (FIG. 1) as part of EUCM 116 (FIG. 1) and
executed on one or more processors (not shown) of CPU 104
of computing system 102 (FIG. 1). Process 300 is entered via
transition point E, first introduced above in conjunction with
FIG. 5.

Process 300 starts in a “Begin Generate Code Set Conver-
tor (CSC)” block 302 and proceeds immediately to a “Moni-
tor Usage” block 304 (see 144, FIG. 2). During block 304,
UMA, which may be turned on and off either occasionally or
permanently based upon predefined rules as needed, moni-
tors, logs, and analyzes all CSC operations at the OS level. In
other words, the data of CSC loading times and total through-
puts for each CSC is recorded, analyzed, and updated. For
example, the number of CSC loading monitoring may include
logging of APl iconv_open( ) oriconv_close( ) at the OS level.
For instance, if iconv_open(big5, IBM-937) has been called
100 times in past 1 minute, then it indicates there were 100
IBM-937_big5 requests in the past 1 minute. In addition, data
throughput of iconv( ) also may be used.

During processing associated with a “Check User Defined
Rules” block 306, information from CSC Generating Thresh-
old and Rules 156 (FIG. 2) is loaded and evaluated based
upon the information generated during processing associated
with block 304. During processing associated with a “Need to
Generate?” block 308, a determination is made as to whether
or not a new CSC should be generated based upon the rules
and thresholds loaded during processing associated with
block 306. If not, control proceeds via a transition point H to
aiconv_open (A-X block 220 (FIG. 3) and iconv_open (X-N)
block 222 (FIG. 3) and processing continues as describe
above.

If, during processing associated with block 308, a determi-
nation is made that a CSC should be generated, control pro-
ceeds to a “Load A_X Map” block 310. During processing
associated with block 310, an A_X map, retrieved during
processing associated with block 270 (FIG. 5) is loaded and,
during processing associated with a “Load X_N Map” block
312, a map retrieved during processing associated with block
270, is loaded.

During processing associated with a “Merge Maps” block
314, the maps loaded during processing associated with
blocks 310 and 312 are merged into a single map. During
processing associated with a “Create A_N Map” block 316,
the merged map created during processing associated with
block 314 is generated (see 146, FIG. 2). During processing
associated with a “Compile Map” block 318, the map gener-
ated during processing associated with block 316 is compiled
into a binary CSC (see 148, FIG. 2).

During processing associated with a “Create Test Cases”
block 320, test cases are generated to ensure that the map
generated during processing associated with block 316 is
accurate. Test cases may be based upon previously generated



US 9,172,395 B2

9

test cases stored in test case pool 158 (FIG. 2). During pro-
cessing associated with block “Verify A_N Map” block 322,
the map is verity using the test cases created during process-
ing associated with block 320 (see 150. FIG. 2).

During processing associated with a “Pass Verification?”
block 324, a determination is made as to whether or not the
map generated during processing associated with block 316 is
able to be verified. If not, control proceeds to a “Handle
Error” block 326. During processing associated with block
326, any errors exposed during processing associated with
block 322 are addressed. During processing associated with a
“Debug/Modify Map” block 328, the map is modified to
correctthe issues identified during processing associated with
blocks 322 and 326. Control then returns to block 316, during
which the corrected map is generated and processing contin-
ues as described above.

If, during processing associated with block 324 a determi-
nation is made that the map generated during processing
associated with block 316 has been verified, control proceeds
to a “Deploy CSC” block 330. During processing associated
with block 330, the verified map is loaded into binary CSCs
115 (FIG. 1) of computing system 102. During processing
associated with an “Update Level-1 CSC List” block 332, an
entry is provided into Level-1 CSC List 128 (FIG. 1) so that
the map may be made available for other processes and com-
puting systems. Finally, control proceeds, via a transition
point G, to End Find/Gen. A_N Conv. block 229 and pro-
cesses 300 and 200 are complete.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural fotrms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the

20

25

30

35

40

45

50

55

60

65

10

blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

We claim:

1. A method, comprising:

detecting a mapping, by a universal convertor, of a first

character set to a second character set and of the second
character set to a third character set;

generating an updated character set conversion module

from the first character set to the third character set in
response to the detecting; and

storing the updated character set conversion module for

utilization of subsequent processing of the first character
set to the third character set.

2. The method of claim 1, wherein the updated character set
conversion module is stored in conjunction with a default
character set conversion table.

3. The method of claim 1, further comprising:

monitoring, logging, and analyzing code set conversion

(CSC) operations; and

determining that the CSC operations corresponding to

mapping exceed a predefined threshold;

wherein the generating is in response to both the detecting

of the mapping and the determining that the CSC opera-
tions exceed the threshold.

4. The method of claim 1, wherein the monitoring is per-
formed at an operating system level.

5.The method of claim 1, wherein the updated character set
conversion is employed by an operating system.

6. The method of claim 1, wherein the character set con-
version module is configured as an iconv utility.

7. The method of claim 1, further comprising:

bypassing the universal convertor during the subsequent

processing; and

employing the updated character set conversion module for

the subsequent processing of the first character set to the
third character set.

8. An apparatus, comprising:

a processor;

a non-transitory, computer-readable storage medium

coupled to the processor; and

logic, stored on the computer-readable storage medium

and executed on the processor, for:

detecting a mapping, by a universal convertor, of a first
character set to a second character set and of the
second character set to a third character set;

generating an updated character set conversion module
from the first character set to the third character set in
response to the detecting; and

storing the updated character set conversion module for
utilization of subsequent processing of the first char-
acter set to the third character set.

9. The apparatus of claim 8, wherein the updated character
set conversion module is stored in conjunction with a default
character set conversion table.

10. The apparatus of claim 8, the logic further comprising
logic for:

monitoring, logging, and analyzing code set conversion

(CSC) operations; and

determining that the CSC operations corresponding to

mapping exceed a predefined threshold;



US 9,172,395 B2

11

wherein the generating is in response to both the detecting
of'the mapping and the determining that the CSC opera-
tions exceed the threshold.
11. The apparatus of claim 8, wherein the monitoring is
performed at an operating system level.
12. The apparatus of claim 8, wherein the updated charac-
ter set conversion is employed by an operating system.
13. The apparatus of claim 8, wherein the character set
conversion module is configured as an iconv utility.
14. The apparatus of claim 8, the logic further comprising
logic for:
bypassing the universal convertor during the subsequent
processing; and
employing the updated character set conversion module for
the subsequent processing of the first character set to the
third character set.
15. A computer programming product, comprising
a non-transitory, computer-readable storage medium; and
logic, stored on the computer-readable storage medium for
execution on a processor, for:
detecting a mapping, by a universal convertor, of a first
character set to a second character set and of the
second character set to a third character set;
generating an updated character set conversion module
from the first character set to the third character set in
response to the detecting; and
storing the updated character set conversion module for
utilization of subsequent processing of the first char-
acter set to the third character set.

10

15

20

25

12

16. The computer programming product of claim 15, the
logic further comprising logic for:

monitoring, logging, and analyzing code set conversion

(CSC) operations; and

determining that the CSC operations corresponding to

mapping exceed a predefined threshold;

wherein the generating is in response to both the detecting

of the mapping and the determining that the CSC opera-
tions exceed the threshold.

17. The computer programming product of claim 15,
wherein the monitoring is performed at an operating system
level.

18. The computer programming product of claim 15,
wherein the updated character set conversion is employed by
an operating system.

19. The computer programming product of claim 15,
wherein the character set conversion module is configured as
an iconv utility.

20. The computer programming product of claim 15, the
logic further comprising logic for:

bypassing the universal convertor during the subsequent

processing; and

employing the updated character set conversion module for

the subsequent processing of the first character set to the
third character set.

#* #* #* #* #*



